
Multi-Task Generalization and Adaptation between
Noisy Digit Datasets: An Empirical Study

Steffen Schneider∗1,2, Alexander S. Ecker1, Jakob H. Macke2, Matthias Bethge1
1 University of Tübingen

2 Technical University of Munich
∗ steffen.schneider@tum.de

Abstract

Transfer learning for adaptation to new tasks is usually performed by either fine-
tuning all model parameters or parameters in the final layers. We show that good
target performance can also be achieved on typical domain adaptation tasks by
adapting only the normalization statistics and affine transformations of layers
throughout the network. We apply this adaptation scheme to supervised domain
adaptation on common digit datasets and study robustness properties under per-
turbation by noise. Our results indicate that (1) adaptation to noise exceeds the
difficulty of widely used digit benchmarks in domain adaptation, (2) the similarity
of the optimal adaptation parameters for different domains is strongly predictive
of generalization performance, and (3) generalization performance is highest with
training on a rich environment or high noise levels.

1 Introduction

After the initial success of deep learning algorithms in computer vision (Krizhevsky et al., 2012),
transfer by fine-tuning either the final layers or all network parameters on a new visual domains
became an important scheme for many application settings (Donahue et al., 2013).

While adaptation of earlier network layers is crucial for good performance on a target task that differs
from the source domain (Kornblith et al., 2018), the question of how to perform this adaptation is
less well investigated. In the context of multi-task, sequential, or meta-learning settings where the
objective is to transfer and keep knowledge between different tasks, this question is of importance.
Motivated by Geirhos et al. (2018) and previous results by Rebuffi et al. (2017), Cariucci et al.
(2017) and Li et al. (2016), which indicate that adaptation of normalization statistics and a feature-
map specific offset and scaling throughout a convolutional network is sufficient for adaptation with
reasonable performance, we study this kind of multi-task generalization in typical domain adaptation
scenarios.

We make the following contributions: First, we corroborate previous results that conditioning a model
on a new task by only adapting a small set of normalization and affine parameters is sufficient for
multi-task learning on reasonable performance levels. Second, we investigate the interplay between
the “richness” of a task and the effects on generalization. Third, in controlled training settings with
two different noise models, we find that (1) applying parameters obtained in a low-noise setting to the
high-noise setting leads to degrading performance levels strongly correlated with the cosine similarity
between the parameter vector and the optimally adapted parameter vector, and (2) parameters obtained
in a high-noise setting generalize well to low-noise settings, even in our minimal fine-tuning scheme.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.
Continual Learning Workshop.

mailto:steffen.schneider@tum.de

x

Domain-specific parameters
for batch norm layers

y

Figure 1: Model architecture using conditional batch normalization:
By only adapting normalization statistics and the following affine
transformation to the target domain, the task-specific behaviour is
distilled into a few thousand parameters.

Adapt + Test

Tr
ai

ni
ng

MNIST USPS Synth SVHN

MNIST

USPS

Synth

SVHN

Figure 2: Domain adaptation
matrix between four digit
datasets.

Our experiments differ from previous work: In contrast to Rebuffi et al. (2017), we consider the
classical domain adaptation setting, in which the label space is shared between tasks and the classifier
does not have to be adapted.

2 Methods

We consider multi-task learning among a source task S and a set of target tasks {Tn}Nn=1, where by
task, we consider an underlying data distribution of causes Y (here: labels), effects X (here: images)
and conditions T , given by the task-specific probability density function (pdf) Ti(x, y) := p(x|y, t =
i)p(y|t = i). As in many machine learning problems, we aim at inferring the conditional distribution
of Y |X with pdf p(y|x) for anti-causal inference from a set of samples. In this work, we consider a
“best-case” setting with access to samples from all tasks.

Structural Learning in Deep Networks. Structural learning is a term originally derived from
sensorimotor research (Braun et al., 2009) and denotes a training setting in which by learning from
many different environments, adaptation to a novel setting no longer requires an adaptation of all
model parameters. Instead, adaptation within a lower-dimensional subspace of parameters is sufficient
for fast and sufficiently accurate performance.

This motivates us to approach the process of fine-tuning deep neural networks not by adapting all
parameters, but only a constrained (small) subset. We first train on a large labeled training set and
then fine-tune on the labeled target data set.

Distilling multi-task knowledge into 0.1% of parameters. For simplification, we use a model
hθ,φ with two sets of parameters. We optimize θ along with φS on the source task S. While usual
fine-tuning would adapt both sets of parameters on a target task T , we refrain from doing so and only
fine-tune the selected subset φ for each target domain, solving the (independent) ERMs

min
θ,φS

Exs,ys∼S [`(hθ,φS (x
s); ys)] and min

φ1,...,φn

N∑
n=1

Ext,yt∼Tn [`(hθ,φn(x
t); yt)]], (1)

which can be either trained in parallel or sequentially as data becomes available, depending on the
exact learning setup. In our experiments, we solve both ERMs jointly, but stress that no information
about the target domains Ti is used to derive either θ or φS , as evident from Eq. 1. While different
choices for this conditioning are possible, we choose to update the statistics for batch normalization,
along with fine-tuning the following affine transformation, similar to previous work by Li et al. (2016)
and Rebuffi et al. (2017), and as depicted in Fig. 2. Note that in this case, the dimensionality of φ
is considerably smaller than θ, and fine-tuning to a particular task is exclusively reflected by these
parameters, since θ was never trained on the target tasks. We used dimφi ≈ 8000 and dim θ ≈ 106

in the experiments presented below.

Tasks. We perform two different experiments with different underlying motivations. For the first set
of experiments, we consider four popular digits datasets: MNIST (LeCun et al., 1998), Street View
House Numbers (SVHN) (Netzer et al., 2011), USPS (Hull, 1994) and Synthetic Images (SYNTH)

2

2 = 0.001
2 = 0.025

2 = 0.05
2 = 0.075

2 = 0.1
2 = 0.15

2 = 0.2
2 = 0.25

2 = 0.3

Ad
ap

t D
om

ai
n

Test Domain

96 96 95 91 87 75 65 55 47
96 96 95 93 90 81 71 62 54
96 96 96 94 92 85 77 68 60
96 96 95 94 93 87 80 73 65
96 96 95 95 93 89 83 76 69
95 95 95 94 93 90 85 79 73
94 94 94 94 93 90 86 81 75
94 94 93 93 92 89 86 81 76
93 93 93 92 91 89 85 81 77

Adaptation from Low to High
p = 0.001

p = 0.0025

p = 0.01

p = 0.05

p = 0.1

p = 0.15

p = 0.2

p = 0.25

p = 0.36

Ad
ap

t D
om

ai
n

Test Domain

96 96 95 86 72 61 51 43 31
96 96 95 88 75 64 54 46 33
96 96 96 90 79 68 58 50 36
96 96 95 93 86 79 70 63 48
94 95 94 93 88 83 76 70 54
94 94 94 92 88 83 78 72 58
93 93 93 91 88 83 79 73 59
92 92 92 90 87 83 78 73 61
90 89 89 87 84 81 77 73 62

Adaptation from Low to High

Figure 3: Adaptation from low noise to varying (higher) levels of Gaussian noise (left) and salt &
pepper noise (right). Matrices show domain adapted on in rows and domain tested on in columns.
Scatter plots show that performance correlates with the angles between the optimal adaptation
parameters for source and target domain (scale: γ and offset: β).

(Ganin et al., 2016), yielding four distinct tasks. For the second set, we augment the SVHN dataset
with either additive point-wise Gaussian noise (with varying variance σ ∈ [0.001, 0.3]) or point-wise
Salt-and-Pepper (S&P) noise (with varying pS = pP =: p/2 ∈ [0, 0.18]). These perturbations yield
nine tasks for each noise model. We select either the lowest or the highest noise variance as the
source task S.

Quantitative Comparison of Task-Specific Parameters. Due to the previously described condi-
tioning of the model on a task, it is possible to compare models adapted to a particular task in a much
smaller parameter space compared to a full neural network. For the problems and network model
considered here, this amounts to around 8,000 parameters evenly split between bias, scale, mean and
variance parameters. As a metric to compare tasks Ti and Tj , we use the cosine similarity, i. e., the
angle between the fine-tuned parameter vectors denoted as

αij = arccos
φTi φj
‖φ′i‖‖φ′j‖

. (2)

Domain Adaptation The fully supervised scenario provides an upper-bound for the performance
of a multi-task learner under the chosen conditioning setting. Beyond this supervised scenario, we
are interested in the reverse question of how much information can actually be leveraged without any
target labels. This is the setting considered in unsupervised domain adaptation (cf. Ben-David et al.
(2010) for a review). In addition to our main study, we apply several recent state-of-the-art domain
adaptation algorithms on the considered task and conclude that surprisingly, the noise adaptation
setting seems to be a harder challenge than adaptation between digit domains on SVHN. We evaluate
the approaches of Sun et al. (2017), French et al. (2017), Haeusser et al. (2017) and Shu et al. (2018).

Implementation and model availability. We implemented all experiments using the salad tool-
box (Schneider et al., 2018) for PyTorch (Paszke et al., 2017) and release the code for reproducing
our results as well as trained models at https://github.com/stes/nips2018-continual.

3 Experiments and Results

Internal adaptation (almost) matches fine-tuning performance on digit benchmarks. In this
first part, we demonstrate that by simply adapting the offset and scale of each feature map (Fig. 1),
we achieve a performance comparable to that of recent domain adaptation algorithms on several digit
adaptation tasks. We train a model on different image domains and fine-tune it to various target tasks
with the proposed adaptation scheme. Our results show that training on “visually rich” domains is
crucial for obtaining good transfer performance (Fig. 2), presumably because it enables the model to
learn more diverse feature representations. This is a crucial insight for the development of domain
adaptation algorithms and motivates the use of generative models and translation-based approaches
when synthetic data is used during training time (cf. Shrivastava et al. (2016)).

Cosine Similarity is predictive of model performance. In our second experiment, we compare
network properties when training on images perturbed by different types of noise (Gaussian and salt

3

https://github.com/stes/nips2018-continual

& pepper) at different noise levels. We train networks in two different configurations on each of the
two noise models. In the first part, we train a model in the low Gaussian or low S&P noise setting
S := T1, and fine-tune the network jointly on the remaining tasks T2, . . . , T9. After convergence,
the parameter configuration is given by the large set of parameters θ derived from the source task
(training configuration), along with the small subset of parameters φi (scales and offsets) adapted
to a particular target task Ti (adaptation). For each test task Tj , we evaluate the performance of all
adaptation configurations (θ, φi), yielding a total of 81 comparisons. As depicted in Fig. 3 and further
in §C we find that, for both noise models, the parameter angle αij is predictive of the (degradation
of) model performance, in cases where the noise during test time has greater variance than during
training (σj > σi and pj > pi).

Noise Robustness of Different Parameter Settings. This correlation is only observed in cases
where the adaptation noise variance σi is lower than the testing noise variance σj , i.e., for all
combinations of tasks in {Ti, Tj : σj > σi}, or the upper triangular part in Fig. 3. The observation
does not hold for the lower triangular part, i.e., for cases where the adaptation noise was higher
than the testing noise. In general, this result corroborates the general intuition that training with
additionally "injected" noise variance, e.g. by means of data augmentation (Krizhevsky et al., 2012),
improves model robustness under this particular noise model.

Figure 4: Performance of var-
ious domain adaptation algo-
rithms adapting from clean to
S&P-perturbed images.

Noise Adaptation as Unsupervised Domain Adaptation. So far
we considered the case where we have full label information on the
target tasks to obtain upper bounds on the target performance. We
now evaluate the noisy digit benchmark in an unsupervised setting.
We test recent algorithms on the perturbed versions of SVHN and
SYNTH with fixed S&P noise (pS = pP = 0.15) and find that
especially the SVHN benchmark is surprisingly hard (Fig. 4). While
transfer from SVHN to SYNTH is easily solved by most algorithms
(>95% performance with most algorithms considered by Schneider
et al. (2018)), transfer from SYNTH to a noisy version of SYNTH
is already challenging for some algorithms. Similarly, transfer from
SVHN to noisy SVHN seems to be a harder task than transfer from
SYNTH to SVHN (88.1%/78.8%/89.7%/85.3% for the different
solvers, cf. Schneider et al. (2018)). We conclude that unsupervised
adaptation to noise is an interesting and challenging problem that
should be considered in future work on domain adaptation.

Control Experiments, obtaining θ in the high noise case. In the second part, serving as a control
experiment, we also train models in the high Gaussian and high S&P noise setting, S := T9, and fine-
tune jointly on T1, . . . , T8. For the Gaussian noise model, performance degrades with the introduction
of noise (from 96% to 85%). However, the adaptation scheme considered here is very effective for
Gaussian noise, as indicated by the main diagonals in Fig. S1, with a performance gap of 77% vs.
85% for θ obtained on low and high noise, respectively. For the S&P model, this is not true, and
full performance of 96% accuracy can be obtained in both settings. However, adaptation with our
proposed scheme is not as effective as before, and the performance gap for evaluation in the high
noise setting is much bigger (62% vs. 96%, cf. Fig. S2). Full results can be found in §C.2 and §C.4.

4 Conclusion

We studied adaptation and generalization properties of convolutional neural networks in different
benchmark settings using digit datasets. We conclude that adaptation of a very limited subset
of parameters (as little as 0.1% of network parameters) can be sufficient to provide competitive
performance, but only given that the source task to train on is sufficiently “rich”, thereby extending
the previous results by Rebuffi et al. (2017). These findings motivate (1) the use of real world datasets
over synthetic ones as well as (2) rethinking the use of translation-based domain adaptation algorithms
as a method to “enrich” the distribution of a synthetic dataset.

To further investigate the latter result, we considered this behaviour more closely in the context of
a synthetic, point-wise noise model in which the “richness” of a task is a controllable parameter.
Our results in this controlled setting suggest that within the 8000-dimensional space of adaptation

4

parameters, configurations derived on high-noise domains attain a much lower empirical risk on any
the target tasks than configurations obtained on low-noise domains. Given the limited dimensionality
of the adaptation parameters, this motivates follow-up work in meta-learning, few shot adaptation
and multi-task learning investigating whether it is possible to directly infer these configurations from
properties of the data without relying on any label information.

Acknowledgements

We thank the International Max Planck Research School for Intelligent Systems (IMPRS-IS) for
supporting St.S.

References
Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wortman

Vaughan. A theory of learning from different domains. Machine Learning, 79(1-2):151–175,
2010. ISSN 15730565. doi: 10.1007/s10994-009-5152-4. URL https://link.springer.com/
content/pdf/10.1007/s10994-009-5152-4.pdf.

Daniel A. Braun, Ad Aertsen, Daniel M. Wolpert, and Carsten Mehring. Motor Task Variation Induces
Structural Learning. Current Biology, 19(4):352–357, 2009. ISSN 09609822. doi: 10.1016/j.
cub.2009.01.036. URL https://www.cell.com/current-biology/pdf/S0960-9822(09)
00608-3.pdf.

Fabio Maria Cariucci, Lorenzo Porzi, Barbara Caputo, Elisa Ricci, and Samuel Rota Bulo. AutoDIAL:
Automatic Domain Alignment Layers. Proceedings of the IEEE International Conference on
Computer Vision, 2017-Octob(4):5077–5085, 2017. ISSN 15505499. doi: 10.1109/ICCV.2017.542.

Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and Trevor
Darrell. DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition. 2013.
ISBN 9781634393973. doi: 10.1007/978-3-319-51844-2{_}3. URL https://arxiv.org/
pdf/1310.1531.pdfhttp://arxiv.org/abs/1310.1531.

Geoffrey French, Michal Mackiewicz, and Mark Fisher. Self-ensembling for visual domain adaptation.
pages 1–15, 2017. URL http://arxiv.org/abs/1706.05208.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario Marchand, Victor Lempitsky, Urun Dogan, Marius Kloft, Francesco Orabona,
and Tatiana Tommasi. Domain-Adversarial Training of Neural Networks. Journal of Machine
Learning Research, 17:1–35, 2016. ISSN 1475-7516. doi: 10.1088/1475-7516/2015/08/013. URL
https://arxiv.org/pdf/1505.07818.pdf.

Robert Geirhos, Carlos R. Medina Temme, Jonas Rauber, Heiko H. Schuett, Matthias Bethge, and
Felix A. Wichmann. Generalisation in humans and deep neural networks. Neural Information
Processing Systems (NIPS) 2018, 8 2018. URL http://arxiv.org/abs/1808.08750.

Philip Haeusser, Thomas Frerix, Alexander Mordvintsev, and Daniel Cremers. Associative Domain
Adaptation. In Proceedings of the IEEE International Conference on Computer Vision, volume
2017-Octob, pages 2784–2792, 2017. ISBN 9781538610329. doi: 10.1109/ICCV.2017.301. URL
http://arxiv.org/abs/1708.00938.

Jonathan J. Hull. A Database for Handwritten Text Recognition Research. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 16(5):550–554, 5 1994. ISSN 01628828. doi:
10.1109/34.291440. URL http://ieeexplore.ieee.org/document/291440/.

Simon Kornblith, Jonathon Shlens, Quoc V Le, and Google Brain. Do Better ImageNet Models
Transfer Better? CoRR, 2018. URL https://arxiv.org/pdf/1805.08974.pdf.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Classification with
Deep Convolutional Neural Networks, 2012. URL http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-Based Learning Applied
to Document Recognition. Proceedings of the IEEE, 1998.

5

https://link.springer.com/content/pdf/10.1007/s10994-009-5152-4.pdf
https://link.springer.com/content/pdf/10.1007/s10994-009-5152-4.pdf
https://www.cell.com/current-biology/pdf/S0960-9822(09)00608-3.pdf
https://www.cell.com/current-biology/pdf/S0960-9822(09)00608-3.pdf
https://arxiv.org/pdf/1310.1531.pdf http://arxiv.org/abs/1310.1531
https://arxiv.org/pdf/1310.1531.pdf http://arxiv.org/abs/1310.1531
http://arxiv.org/abs/1706.05208
https://arxiv.org/pdf/1505.07818.pdf
http://arxiv.org/abs/1808.08750
http://arxiv.org/abs/1708.00938
http://ieeexplore.ieee.org/document/291440/
https://arxiv.org/pdf/1805.08974.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

Yanghao Li, Naiyan Wang, Jianping Shi, Jiaying Liu, and Xiaodi Hou. Revisiting Batch Normalization
for Practical Domain Adaptation. Technical report, 2016. URL https://arxiv.org/pdf/1603.
04779.pdf.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
Digits in Natural Images with Unsupervised Feature Learning. Technical report, 2011. URL
http://ufldl.stanford.edu/housenumbers/.

Adam Paszke, Gregory Chanan, Zeming Lin, Sam Gross, Edward Yang, Luca Antiga, and Zachary
Devito. Automatic differentiation in PyTorch. In Advances in Neural Information Processing
Systems 30, number Nips, pages 1–4, 2017.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Learning multiple visual domains with
residual adapters. In I Guyon, U V Luxburg, S Bengio, H Wallach, R Fergus, S Vishwanathan,
and R Garnett, editors, Advances in Neural Information Processing Systems 30, pages 506–516.
Curran Associates, Inc., 2017. URL http://arxiv.org/abs/1705.08045.

Steffen Schneider, Alexander S Ecker, Jakob H Macke, and Matthias Bethge. Salad: A Toolbox for
Semi-supervised Adaptive Learning Across Domains, 2018. URL https://openreview.net/
forum?id=S1lTifykqm.

Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Josh Susskind, Wenda Wang, and Russ Webb.
Learning from Simulated and Unsupervised Images through Adversarial Training. Technical
report, 2016. URL https://arxiv.org/pdf/1612.07828.pdf.

Rui Shu, Hung H Bui, Hirokazu Narui, and Stefano Ermon. A DIRT-T Approach to Unsupervised
Domain Adaptation. International Conference on Learning Representations, 2018. URL https:
//arxiv.org/pdf/1802.08735.pdfhttp://arxiv.org/abs/1802.08735.

Baochen Sun, Jiashi Feng, and Kate Saenko. Correlation alignment for unsupervised domain
adaptation. In Advances in Computer Vision and Pattern Recognition, number 9783319583464,
pages 153–171. 2017. ISBN 2191-6586. doi: 10.1007/978-3-319-58347-1{_}8. URL https:
//arxiv.org/pdf/1612.01939.pdf.

6

https://arxiv.org/pdf/1603.04779.pdf
https://arxiv.org/pdf/1603.04779.pdf
http://ufldl.stanford.edu/housenumbers/
http://arxiv.org/abs/1705.08045
https://openreview.net/forum?id=S1lTifykqm
https://openreview.net/forum?id=S1lTifykqm
https://arxiv.org/pdf/1612.07828.pdf
https://arxiv.org/pdf/1802.08735.pdf http://arxiv.org/abs/1802.08735
https://arxiv.org/pdf/1802.08735.pdf http://arxiv.org/abs/1802.08735
https://arxiv.org/pdf/1612.01939.pdf
https://arxiv.org/pdf/1612.01939.pdf

Supplementary Material

A Network Modules

A.1 Conditional Layers

The adaptable part of our network architecture outlined below is a ConditionalBatchNorm layer,
performing the operation:

f(x; c) =
x− µ(c)√
σ(c)2 + ε

� γ(c) + β(c) (3)

We note that other choices for f are certainly possible, i.e., depth-separated convolutions, residual con-
nections as used by Rebuffi et al. (2017), and other adaptation modules. Extending our experimental
setup is easily possible for these kind of experiments.

A.2 Model Architecture

For specific questions regarding model parameters, the exact training setups and hyperparameters,
please refer to the software repository we are releasing along with this paper. As a first insight, we
share the model architecture here:

DigitModel(
(features): DigitFeatures(

(norm): InstanceNorm2d(3, eps=1e-05, momentum=0, affine=False,
track_running_stats=False)

(conv1_1): Conv2d(3, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv1_1_bn): ConditionalBatchNorm()
(conv1_2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv1_2_bn): ConditionalBatchNorm()
(conv1_3): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv1_3_bn): ConditionalBatchNorm()
(pool1): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1,

ceil_mode=False)

(drop1): Dropout(p=0.5)
(conv2_1): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2_1_bn): ConditionalBatchNorm()
(conv2_2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2_2_bn): ConditionalBatchNorm()
(conv2_3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2_3_bn): ConditionalBatchNorm()
(pool2): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1,

ceil_mode=False)

(drop2): Dropout(p=0.5)
(conv3_1): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1))
(conv3_1_bn): ConditionalBatchNorm()
(nin3_2): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), padding=(1, 1))
(nin3_2_bn): ConditionalBatchNorm()
(nin3_3): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), padding=(1, 1))
(nin3_3_bn): ConditionalBatchNorm()

)
(classifier): Linear(in_features=128, out_features=10, bias=True)

)

7

B Control Experiments: High Noise Training Settings

As a control experiments, we train networks in the high noise setting to get an understanding of
upper-bound performance.

2 = 0.001
2 = 0.025

2 = 0.05
2 = 0.075

2 = 0.1
2 = 0.15

2 = 0.2
2 = 0.25

2 = 0.3

Ad
ap

t D
om

ai
n

Test Domain

96 96 95 91 87 75 65 55 47
96 96 95 93 90 81 71 62 54
96 96 96 94 92 85 77 68 60
96 96 95 94 93 87 80 73 65
96 96 95 95 93 89 83 76 69
95 95 95 94 93 90 85 79 73
94 94 94 94 93 90 86 81 75
94 94 93 93 92 89 86 81 76
93 93 93 92 91 89 85 81 77

Adaptation from Low to High
2 = 0.001
2 = 0.025

2 = 0.05
2 = 0.075

2 = 0.1
2 = 0.15

2 = 0.2
2 = 0.25

2 = 0.3

Ad
ap

t D
om

ai
n

Test Domain

96 96 96 95 94 92 89 84 80
96 96 96 95 94 92 89 85 81
96 96 96 95 94 92 89 86 81
96 96 96 95 94 93 90 86 82
96 96 95 95 95 93 90 87 83
95 95 95 95 94 93 90 87 84
95 95 95 95 94 93 90 88 84
95 95 95 94 94 92 90 88 84
94 94 94 94 93 92 90 87 85

Adaptation from High to Low

Figure S1: Comparision between adaptation results based on the training domain for θ: The left
figure shows adaptation results when θ is derived on the low noise domain σ2

1 = 0.001, and φi is
adapted to the noise setting σ2

i . The right figure shows adaptation results when θ is derived on the
high noise domain σ2

9 = 0.3, and φi is adapted to the noise setting σ2
i . Notably, in the Gaussian noise

setting, overall training performance degrades even in the case when all parameters θ, φ9 are adapted
to match the high noise setting, yielding a maximum achievable performance of 85% with the chosen
model.

p = 0.001

p = 0.0025

p = 0.01

p = 0.05

p = 0.1

p = 0.15

p = 0.2

p = 0.25

p = 0.36

Ad
ap

t D
om

ai
n

Test Domain

96 96 95 86 72 61 51 43 31
96 96 95 88 75 64 54 46 33
96 96 96 90 79 68 58 50 36
96 96 95 93 86 79 70 63 48
94 95 94 93 88 83 76 70 54
94 94 94 92 88 83 78 72 58
93 93 93 91 88 83 79 73 59
92 92 92 90 87 83 78 73 61
90 89 89 87 84 81 77 73 62

Adaptation from Low to High
p = 0.001

p = 0.0025

p = 0.01

p = 0.05

p = 0.1

p = 0.15

p = 0.2

p = 0.25

p = 0.36

Ad
ap

t D
om

ai
n

Test Domain

96 96 96 92 85 77 69 62 48
96 96 96 95 91 83 74 65 49
96 96 96 96 93 88 79 70 52
95 95 96 96 96 95 94 90 73
95 95 95 96 96 96 96 95 89
95 95 95 95 96 96 96 95 93
93 94 94 95 96 96 96 96 95
93 93 94 95 96 96 96 96 95
91 92 93 94 95 96 96 96 96

Adaptation from High to Low

Figure S2: Similar organization as in Fig. S1, but for the Salt&Pepper case, where the main parameters
are trained on low noise in the left, and in the high noise setting in the right plot. Crucially, in contrast
to Gaussian noise, the adaptation scheme works less well when transferring from very severe noise to
low noise, indicating that this perturbation scheme more closely resembles distinct tasks that require
a larger amount of adaptation, at least in the extreme cases. Up to p = 0.15, the results more closely
match the Gaussian case. Very interestingly, the model is able to fully adapt to the high S&P noise
model, in contrast to the high variance Gaussian model.

8

C Parameter Angle is Predictive of Performance

We provide additional material for extending Fig. 3. The left part of Fig. 3 is a part of the full results
depicted in §C.1, the right part of Fig. 3 is part of §C.3. For the control experiments, we show the
same plots in §C.2 and §C.4 for Gaussian and Salt and Pepper noise, respectively. We note that in
these settings, the correlation is less clear, especially for the Gaussian noise setting.

C.1 Gaussian Noise, Training on low noise domain

Mean

train > test

test > train

Angle (°) Transfer Accuracy

60 80
Accuracy [%]

5

10

15

An
gl

e
[°

]

Correlation (test > train)

2
4
6
8
10
12

0.5

0.6

0.7

0.8

0.9

Variance

train > test

test > train

Angle (°) Transfer Accuracy

60 80
Accuracy [%]

0

20

40

60

An
gl

e
[°

]

Correlation (test > train)

10
20
30
40
50
60

0.5

0.6

0.7

0.8

0.9

train > test

test > train

Angle (°) Transfer Accuracy

60 80
Accuracy [%]

20

25

30

35

An
gl

e
[°

]
Correlation (test > train)

5
10
15
20
25
30
35

0.5

0.6

0.7

0.8

0.9

train > test

test > train

Angle (°) Transfer Accuracy

60 80
Accuracy [%]

20

30

40

50

60

An
gl

e
[°

]

Correlation (test > train)

10
20
30
40
50

0.5

0.6

0.7

0.8

0.9

Figure S3: Relationship between angles of different adaptation parameters (top to bottom: µ(c),
σ2(c), γ(c), β(c)). Regarding transfer accuracy (middle), parameter angle is predictive of accuracy
when adaptation is performed on a domain richer (with higher noise variance) than the test domain.

9

C.2 Gaussian, Training on high noise domain

Mean

train > test

test > train

Angle (°) Transfer Accuracy

80 85 90 95
Accuracy [%]

2

4

6

8

An
gl

e
[°

]

Correlation (test > train)

1
2
3
4
5
6
7
8

0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94

Variance

train > test

test > train

Angle (°) Transfer Accuracy

80 85 90 95
Accuracy [%]

2.5

5.0

7.5

10.0

12.5

An
gl

e
[°

]

Correlation (test > train)

2
4
6
8
10
12

0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94

train > test

test > train

Angle (°) Transfer Accuracy

80 85 90 95
Accuracy [%]

16

18

20

An
gl

e
[°

]

Correlation (test > train)

2.5
5.0
7.5
10.0
12.5
15.0
17.5
20.0

0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94

train > test

test > train

Angle (°) Transfer Accuracy

80 85 90 95
Accuracy [%]

20

25

30

35

An
gl

e
[°

]
Correlation (test > train)

5
10
15
20
25
30
35

0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94

Figure S4: Control experiments with most parameters tuned on the high noise case: Relationship
between angles of different adaptation parameters (top to bottom: µ(c), σ2(c), γ(c), β(c)). Note that
the resulting parameter angles are much more similar compared to the low-noise case, indicating the
model weights transfer better.

10

C.3 Salt and Pepper Noise, Training on low noise domain

Mean

train > test

test > train

Angle (°) Transfer Accuracy

40 60 80
Accuracy [%]

0

5

10

15

An
gl

e
[°

]

Correlation (test > train)

0
2
4
6
8
10
12
14
16

0.4
0.5
0.6
0.7
0.8
0.9

Variance

train > test

test > train

Angle (°) Transfer Accuracy

40 60 80
Accuracy [%]

0

20

40

60

An
gl

e
[°

]

Correlation (test > train)

10
20
30
40
50
60

0.4
0.5
0.6
0.7
0.8
0.9

train > test

test > train

Angle (°) Transfer Accuracy

40 60 80
Accuracy [%]

20

30

40

An
gl

e
[°

]

Correlation (test > train)

5
10
15
20
25
30
35

0.4
0.5
0.6
0.7
0.8
0.9

train > test

test > train

Angle (°) Transfer Accuracy

40 60 80
Accuracy [%]

20

40

60

An
gl

e
[°

]
Correlation (test > train)

10
20
30
40
50
60

0.4
0.5
0.6
0.7
0.8
0.9

Figure S5: Relationship between angles of different adaptation parameters (top to bottom: µ(c),
σ2(c), γ(c), β(c)). Results are consistent with the Gaussian noise case, albeit the values are more
scattered for the variance parameter.

11

C.4 Salt and Pepper Noise, Training on high noise domain

Mean

train > test

test > train

Angle (°) Transfer Accuracy

60 80
Accuracy [%]

2

4

6

8

10

An
gl

e
[°

]

Correlation (test > train)

0

2

4

6

8

10

0.5

0.6

0.7

0.8

0.9

Variance

train > test

test > train

Angle (°) Transfer Accuracy

60 80
Accuracy [%]

5

10

15

20

An
gl

e
[°

]

Correlation (test > train)

2.5
5.0
7.5
10.0
12.5
15.0
17.5

0.5

0.6

0.7

0.8

0.9

train > test

test > train

Angle (°) Transfer Accuracy

60 80
Accuracy [%]

16

18

20

An
gl

e
[°

]

Correlation (test > train)

2.5
5.0
7.5
10.0
12.5
15.0
17.5

0.5

0.6

0.7

0.8

0.9

train > test

test > train

Angle (°) Transfer Accuracy

60 80
Accuracy [%]

25

30

35

An
gl

e
[°

]
Correlation (test > train)

5
10
15
20
25
30

0.5

0.6

0.7

0.8

0.9

Figure S6: Relationship between angles of different adaptation parameters (top to bottom: µ(c),
σ2(c), γ(c), β(c)). As in the Gaussian noise case, less adaptation in the parameters is required.
However, difference in parameter angles is bigger compared to the high Gaussian noise setting, which
aligns with the result that transfer is more challenging in the S&P setting.

12

D Digit Adaptation

We show the full data for the supervised digit adaptation experiments in Fig. 2. In particular, for all
tuples (i, j, k) denoting indices of the task for training, adaptation and testing, we derive parameters
θi on the training task Ti, adapt φj on the adaptation task Tj , following the objective

θi, φi = arg min
θi,φi

Ex,y∼Ti [`(hθi,φi(x); y)], φj = argmin
φj

Ex,y∼Tj [`(hθi,φj (x); y)], (4)

and evaluate the risk on the target or test task Tk as

Ex,y∈Tk`(hθi,φi
(x); y). (5)

For 4 domains, this yields 64 experiments in total.

mnist usps synth svhn
Test

m
ni

st
us

ps
sy

nt
h

sv
hn

Ad
ap

t

99.7 69.2 50.9 35.9

98.4 97.2 55.0 36.9

98.9 76.7 94.0 69.7

97.3 73.1 89.3 81.4

Train: mnist

30

45

60

75

90

mnist usps synth svhn
Test

m
ni

st
us

ps
sy

nt
h

sv
hn

Ad
ap

t

98.8 94.6 63.4 42.8

91.6 99.9 60.7 39.6

95.2 95.5 93.9 72.9

86.5 90.0 88.8 81.7

Train: usps

30

45

60

75

90

mnist usps synth svhn
Test

m
ni

st
us

ps
sy

nt
h

sv
hn

Ad
ap

t

98.2 75.8 97.9 85.1

93.5 96.3 95.5 77.7

91.1 62.2 99.7 88.2

87.7 56.4 98.7 93.1

Train: synth

30

45

60

75

90

mnist usps synth svhn
Test

m
ni

st
us

ps
sy

nt
h

sv
hn

Ad
ap

t

98.1 76.7 94.1 89.1

93.5 96.1 90.7 80.5

89.5 67.1 97.9 94.5

82.1 57.1 96.1 95.8

Train: svhn

30

45

60

75

90

Figure S7: From left to right, we show the full results for training θ on MNIST, USPS, SYNTH or
SVHN, respectively, along with all combinations for adaptation and testing. Note that in the main
text, we only discuss the cases where adaptation and test domains are equivalent.

13

	Introduction
	Methods
	Experiments and Results
	Conclusion
	Network Modules
	Conditional Layers
	Model Architecture

	Control Experiments: High Noise Training Settings
	Parameter Angle is Predictive of Performance
	Gaussian Noise, Training on low noise domain
	Gaussian, Training on high noise domain
	Salt and Pepper Noise, Training on low noise domain
	Salt and Pepper Noise, Training on high noise domain

	Digit Adaptation

